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UNSTEADY MOTION OF A THIN FOIL IN AN
INCOMPRESSIBLE FLUID

D. Homentcovschi

1. Introduction /537*

The study of the motion of a thin airfoil in a nonvischus,

incompressible fluid was the object of numerous investigations

(for a brief bibliography on this field, consult the textbook

of fluid mechanics by Academician Caius Jacob El[]). In order

to explain the variation in circulation time of the fluid

velocity about the airfoil, all the authors base themselves on

W. Birmbaum's hypothesis, according to which there is a con-

tinuous formation of vortices at the trailing edge of the airfoil.

This implies the existence of a discontinuity line of velocities

in thatpart of the Ox axis which the airfoil crosses in its

motion.

We shall attempt a slightly different approach to the prob=

lem. We shall use the equations of fluid mechanics written in

terms of distributions (2), which will allow us to avoid reliance

on the hypothesis dealing with the existence and the shape of

the discontinuity surface. The small-perturbation hypothesis

used by us enhbles us to linearize the equations of motion, the

limiting conditions, and permits us to use the latter in the pro-

jection of the airfoil on the Ox axis. Let us note that this

hypothesis was used in previous studies dealing with this problem,
since otherwise the jump conditions resulting from the theorem of

conservation of the momentum would not be verified on the dis-

continuity surface.

* Numbers in the margin indicatepTpagination in the foreign text.
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Subsequently, a representation is obtained for the velocity

field which has all the characteristics of ther1previously deter-

mined solution to this problem. Thus, the existence of the

discontinuity line of velocities on the segment (1 - s(t), 1)

is a result of the established formula and its posulation is no /538

longer necessary. Consequently, W. Birnbaum's model is the only

possible model for the unsteady motion of an incompressible!ifluid.

The general case of the airfoil with finite'9thickness is

also discussed in this study. If the area of the airfoil changes

in time, it is shown that there is a source line superposed on

the voltage line on segment (1 - s(t), 1) of the axis Ox.

2. Formulation of the Problem

Let us consider a thin airfoil profile whose equations are

with regard to a trihddron bound to the airfoil, which moves with

a velocity fe(t) in an incompressible fluid which is nonviscous

and fills the whole plane. Let us admit that the direction of

axis Olxl coincides with the direction of the airfoil speed,

while its sense is opposite to the sense of the vector. The

unsteady nature of the motion is due both to the fact that the

vector Ve(t) has a time-variable modulus, and due to vibrations

of the airfoil given by Eq. (1). We shall relate the motion of

the gluid to a fixed trihddron Oxyz which is none other than the

position-t = 0 of the OlxlYlzl trihedron. We thus obtain

1 X 
(2)

Va 79-

The equations in terms of distribution characterizing the motion

of the fluid have the following form:
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div 0, (3)

+ R", + v (-T 8) e(C. 9 8) NO 3?r (24)

In these equations v(x,y,t) and p(x,y,t) denote the per-

turbations of velocity and pressure, respectively, -e(x;t): ',

and a ~~Lxt)ame magnitudes which characterize the resistance

to forward motion and the lifting force which acts on the

airfoil, ,and

1 for -1-s<Z<1-Q
') t for e(-o; -1 - U)L(1- - +, o)

is a function which is characteristic for the projection of the

airfoil profile on the Ox axis. We shall write the limiting

conditions of the problem in a linearized form

ae (---&, -(5)

-; t) F- &-(X; 9)?

where y = sY+(xl;t) E EY+(x + s;t) are the equations of the two /539

arches of the profile with regard to the system of fixed axes.

Applying the Laplace transform with regard to time and the

Fourier transform with regard to space variables of systems (3)

and (4), the following equations areobbtained:

ik1 C(k,; k 2; k)+ik Vzk,; ki; k) = 0,

k U(k1 ; k,; k) + ikP(k; ki; k) =

&2 0() + i(w; k; k0)),



where U(; a;(; do dy (;;) 4...

Hence we obtain

Y(bs; Ag; = [&4T + ],l- [-{ ( ; ) (; 6) 8g) +e4; v; )) -

+ - {4; f) 4(4; C) EN) + V(; ; )II

8(l; t; I = 9)kl + p (-1~E (c; iE ; C) i(v)+[(x t )) +

but since

7i (U + )I

we have

0(8) e - y
(t ) 2 [cI(a; 9) 0@; ) 8(y) )+ I(X; Y; 0)]

27 (xs + y )

2x (xs + ye)s
(7)

T(X; Y; )= e(t) 2xy () e; ) 8(y) (+ z:(.y; o)]+

02) y2 - 2

2e- r (z2 -- + -~ (a; t) 0(x; C) 8(y) + (; y; 0)].

Or considering the complex velocity /540

+ i(2r)- 0(t) -' * u(w; g) 0(e; ) S(y) + 4i( w)' 0() &-

* [(z, f, 0) + it(X, , 0)]
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where z = x + iy. The explicit expression of the complex

velocity will be

The last term of Eq. (8) can be seen immediately to be nothing
else than v(x,y,0), so that we have

8. Properties of the Function f(z;t)

1. The function f(z;t) is a olomorphic function of the

variable v in the complex plane with section [-1 - s (t); +1]

on the real axis. Indeed, function f(z;t) is expressed by a

double integral which extends over the cross-hatched area in

Fig. 1. By changing the order of integration we have:

Ar. (9 1)

The expression of H( ,t) results from the integral with respect.

to T. A function with the expression (9)) is evidently olo-

morphic in the complex plane with section [-1 - s(t), 1].

-2
2. The function f(z;t) behaves at large distances as z-

Thus, the condition of conservation of the circulation imposed by

Thompson's theorem is fulfilled.
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Fig. 1.

3. The derivative with respect to time of f(z;t) is an

olomorphic function at the outside of the airfoil. Indeed we

have

Of(z; ) i dlpo ( Et)-iet( ,t)
8 t 27c ( - )(10)

so that wevain'i e that bheoabove statement is evident.

4. Solution of the Problem /541

We shall use the limiting condition in order to determine

the functions n(x;t) and Z(x;t), which enter into formula (9).

We shall write function f(z;t) in the form:

(z -\i



On segments (--, -1 - s(t)], [1, + 0) we have

Km (f(; )) = 0,
, (12)

e {f, (z; )} = 0.

It also results from Eq. (10) that:

( z; (13)

for z = e(1-- (t), ).

The expressions lead to the conditions: /542

Im {f1(z; t)},-,o = ,(x),
Xe (1 - sM; 1), (14)

Re {f,(z; t)),.. = U(),

Ul(x) and U2 (x) are momentarily Arbitrary functions. Likewise,

using the above notations, the limiting conditions (5) assume

the form:

Im {s (z; ) + f, (z; t)),,,o = - .(; t),

(15)
Ilm (fi (z; 9) + f2 (z; } l- " - O-(f; t),

(We hae.' assumed that the airfoil profile starts at rest with

t = 0. The general case should be similarly treated.)

Taking into account Eqs. (12) and (14), the following

limiting conditions are obtained from these expressions in order

to determine the functions fl(z;t) and f 2 (z;t):
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m fU; ')~ 0, (- co ; - 1 - ) U (1; + co),

-oU(z a; t))& e = U,(z), ~(1 - s 1), (17)

Rm (fzxs; g))V-+O= - [+(o; )-1,V; 9)p 0 6 (-1-8; 1-G)t

iE s (f(s 8))M-3, w V(-A c, -1 = -x)U(1; + cD)

0 fgU(z; f)),O = Ees)1

SIn 2(f ); t)} ns=-[2,(e; + t.(#; 8)], we (-I-a, 1-8).

Functan ,,, zm;t) is thus a solution for a Dirichlet problem for

the upper semi-plane: .i

e , ( ) - 1_(; ) d 1 U( tl()fst"; t) = = - -- ' 1 (18)
7rz - 1I-(t) -(18

Function U1 (W) will be determined on condition that function

fl(t;z) behaves at infinity like z-2, which leads to the integral

equation:

U ( d = [-t 1 ; t) - : (E; t)] d 9,
,_,,) . - 8-st ) (19)

but

oY(z;t) - OY(x + ,t (t) + x + 8, t).

In $~~) ,w). ,halfiinakgao hangiabfevai4ble . + s = (1, /543

1+ U,( 1 - a) dt, =

+1Oia .;• t)- _____ (20)

or
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_I E = (; )- (Y 9] d -d(S) (20')

where we designated the area of the airfoil by a(s).

From expression (21) we obtain by derivation

U 1I(1 -o) () (21)
de

We shall note that function Ul(x) is different from zero only if

the area of the airfoil changes during the motion. Physically,

this describes the intensity of a source situated on the segment

(1 - s, 1) on axis Ox. Once we have determined the function

fl(z;t) from expression [3]:

o -ose a 2 O 2 J-,-a(x - )

Function Z(x;t) is also obtained (taking into account Kutta-

Jukowsky's condition).

The problem under limiting conditions for determining the

function f2 (z;t) is identical to the limiting problem which

determines the unsteady motion of the thin airfoil without

thickness, according to W. Birnbaum's hypothesis. Its solution

is given, for example, in [1], and it leads to the integral

e~iN ,Wagner's equation for determining the function U2 (x).
From the expression

Sf,(; t) 1 an(s; -) i -**n(Zo _;t)

*o - 2 O 1 -x-, ( - )

function n(x;t) is also obtained.

9



REFERENCES

1. Jacob, Caius, Introduction math~matique a la m4canique des /544
fluides [Mathematical Introduction to Fluid Mechanics],
Bucharest-Paris, 1959.

2. Homentoovischi, D., "Linear steady aerodynamics I1f (in press).

3. Fox, C., Canadian Journal of Math. 9, 110-115 (1957).

10


